
Singaporean Journal Scientific Research (SJSR)
ISSN: 2231 - 0061Vol.3, No.2 pp.163 - 165
©Singaporean Publishing Inc. 2010
available at: : http://www.iaaet.org/sjsr

Method Level Detection and Removal of Code Clones in C and
Java Programs using Refactoring

1Mrs. E.Kodhai ,2V.Vijayakumar, 3G. Balabaskaran, 4T.Stalin, 5B.Kanagaraj
1Sri ManakulaVinayagar Engineering College,Department of Information Technology, Puducherry, India

Email: baas.1989@gmail.com
2,3,4,5SriManakulaVinayagar Engineering College,Department of Information Technology, Puducherry, India

Email: Viji_kum_truth@yahoo.com, kodhaiej@yahoo.co.in, stalin_waiting4u@yahoo.com

Abstract - Clone detection and refactoring is the major
role in software maintenance and evaluation. A well-
known bad code smell in refactoring and software
maintenances is duplicated code, or code clones. A code
clone is a code fragment that is identical or similar to
another. Unjustified code clones increase code size, make
maintenance and comprehension more difficult, and also
indicate design problems such as lack of encapsulation or
abstraction.This paper proposes to automatically
detecting code clones in c/java programs, underlying a
collection of refactoring to support user-controlled
automatic clone removal, and examines their application
in substantial case studies. Both the clone detector and
the refactoring will be done using new refactoring
methods.

Index terms -Detection, Refactoring, Duplicated code

1. INTRODUCTION

The software comprises both programs and data. The
paper mainly contributes on the process of software
evolution and maintenance. In software engineering the
software maintenance is the delivery to correct faults to
improve performance or other attributes adapts the product to
a modified environment.Software evolution is the process
which refers to the process of developing software initially
and then repeatedly updating it for various reasons.

A. Code clones

A code clone is a pair (or set) of code fragments in
source files of a software product.

B. Clone detection

Common terminologies for the clone relations between
two or more code fragments are the phrases clone pair and
clone class. A clone pair is a pair of code fragments which
are identical or similar to each other; a clone class is the
maximal set of code fragments in which any two of the code
fragments form a clone pair. In this paper, we distinguish the
following four types of clones. All these four types of clones
ignore variations in literals, layout and comments.

Type 1: Identical code fragments.
Type 2: Code fragments that are identical after consistent
(i.e. semantic-preserving) renaming of variable names.

Type 3: Code fragments that are identical after renaming all
variable names to the same name.
Type 4: Code fragments that are identical after renaming all

function names and variable names to the same name,
respectively

Obviously, these four types of clones satisfy a subset
relation, i.e. clones of Type i(i=1;2;3) form a subset of clones
of Type (i+1).Among the four types of clones, Type 1 and
Type 2 represent the clones that are most suitable for
automatic clone removal because of the semantic
equivalence between cloned code fragments, and they are
also the kinds of clones that are reported by the Wrangler
clone detector. Type 3 and Type 4 clones are not suitable for
mechanical removal, but they somehow reveal structure-level
duplication, and are obtainable from the intermediate results
of the Wrangler clone detector.

2. REFACTORING

Refactoring is the process of changing the structure of a
program while maintaining all of its functionality. There are
many types of refactoring that you can do such as renaminga
class, changing a method signature, or extracting some code
into a method. With each refactoring, you carry out a number
of steps that keep your code consistent with theoriginal code.

A. Why Refactoring is Important

164

Published: Singaporean Publishing

Method Level Detection and Removal of Code Clones in C and Java Programs using Refactoring

When refactoring by hand, it is easy to introduce errors
into your code such as spelling mistakes or missing a step in
the refactoring. To prevent and quickly fix these errors,
thorough testing should be performed before and after each
refactor. You may wonder if refactoring is worth going
through all this.

There are several reasons why refactoring should be
used. You may want to update a program that is poorly
coded. Perhaps none of the original design team is present
and no one on the current design team understands the code.
In order to update it, you will have to redesign and
restructure the program to fit what you want it to do. Another
reason is that you may want to add a feature that the original
design cannot accommodate. In order to add it, you will have
to restructure the code. The third reason is that an automatic
refactoring tool, such as the refactoring in Eclipse, can
generate code for you.

By using refactoring, you can easily change the structure
of a program to what makes logical sense while rewriting
code as little as possible and still keeping its functionality. If
refactoring is used on a regular basis to constantly keep a
good structure, less time will be needed to fix any bugs and it
will be easy to add new code to the design.

B. Types of Refactoring

The first type contains refactoring that change the
physical structure of the code and classes such as Rename
and Move. The second type contains refactoring that change
the code structure on a class level such as Pull Up and Push
Down. The third type contains refactoring that change the
code within a class such as Extract Method and Encapsulate
Field. The sections and their refactoring are shown below.

Type 1 – Physical Structure
• Rename
• Move
• Change Method Signature
• Convert Anonymous Class to Nested
• Convert Nested Type to Top Level (Eclipse 2 only)
• Move Member Type to New File (Eclipse 3 only)

Type 2 – Class Level Structure
• Push Down
• Pull Up
• Extract Interface
• Generalize Type (Eclipse 3 only)
• User Supertype Where Possible

Type 3 – Structure inside a Class
• Inline
• Extract Method
• Extract Local Variable
• Extract Constant
• Introduce Parameter (Eclipse 3 only)
• Introduce Factory (Eclipse 3 only)
• Encapsulate Field

3. APPROACH

A. Detecting Functions
For detecting functions in the source file the following

information is need. They are beginning and end of the body,
beginning of the declaration. The two important things which
is necessary to calculate the similarity between the functions
are as follows,

 Compare function signatures
 Name of the function

The generation of the name of the function is impossible

because the conditional compilation may change the location
of a function depending on compile-time switches.

The first approach in this paper is to detect the possible
clones in the source file and preserve it for future use. For
detecting the clones first have to detect all the possible
functions by using the necessary functions. For detecting the
functions the transform code is converted into the
preprocessed form. After that organize the code and extract
that organized code. After extracting the code the code is
split led into the number of tokens for comparing and
detecting the similarity.

4. CLONE ELIMINATION

After detecting functions or method in c/java programs,
to evaluate clone elimination by means of refactoring, we
underwent the process of removing the clones.

In this system, we are taking the methods.
The methods are:

 Rename method.

165

Published: Singaporean Publishing

Method Level Detection and Removal of Code Clones in C and Java Programs using Refactoring

 Add parameter.
 Replace constructor with factory methods.
 Replace parameter with explicit methods.
 Remove setting method.

The main approach in this paper into detect the possible
clones and removing the clones using refactoring methods
which is not supporting for existing systems.

5. CONCLUSION

In this paper, we have presented clone detection which
makes use of detecting the clones to improve performance
and efficiency, and a collection of refactoring which together
help to remove clones from code under the user’s control. In
main approach in our system is both the detection and
removal are done in the C and JAVA language programming.

ACKNOWLEDGEMENT

The authors would like to thanks Mr. Martin Fowler and
Kent Beck(Refactoring: Improving the Design of Existing
code) and Simon Thompson(Computing Laboratory,
University of Kent) for their support.

REFERENCES

[1] Huiqing Li, Simon Thompson, Clone Detection and

Removal for Erlang/OTP within a Refactoring
Environment, PEPM’09, January 19–20, 2009,
Savannah, Georgia, USA.

[2] Martin Fowler, Kent Beck (Contributor), John Brant
(Contributor), William Opdyke, don
Roberts,Refactoring: Improving the Design of Existing
Code, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA,USA, 1999. ISBN0-201-48567-2.

[3] H. Roy and R. Cordy. A Survey of Software Clone
Detection Research.Technical report, School of
Computing, Queen’s UniversityatKingston,Ontario,
Candada, 2007.

[4] Eytan Adar. GUESS: a language and interface for graph
exploration. In Proceedings of the 2006 Conference on
Human Factors in Computing Systems (CHI'06), pp.
791-800, Montreal, Quebec, Canada, April 2006.
(PDF)Eytan Adar and Miryung Kim.SoftGUESS:
Visualization and Exploration of Code

[5] Clones in Context. In the proceedings of the 29th
International Conference on Software Engineering
(ICSE'07), Tool Demo, pp.762-766, Minneapolis, MN,
USA, May 2007 .

[6] R. Agrawal and R. Srikant.Mining Sequencial
Patterns.In Proceddings of the 11th In-fernation
Conference of Data Engineering (ICDE'95), pp. 3-14,
Taipei, Taiwan, March 1995.

